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1. Introduction

The important mathematical problem of evaluating Feynman integrals arises naturally in

elementary-particle physics when one treats quantum-theoretical amplitudes in the frame-

work of perturbation theory. This problem originated in the early days of perturbative

quantum field theory. Over more than five decades, a great variety of methods for eval-

uating Feynman integrals has been developed. However, to check whether the Standard

Model or its extensions describe adequately particle interactions observed in experiments,

one needs to perform more and more sophisticated calculations, so that one tries not only

to update existing methods but also develop new effective methods of evaluating Feynman

integrals.

After a tensor reduction based on some projectors a given Feynman graph generates

various scalar Feynman integrals that have the same structure of the integrand with various

distributions of powers of propagators which we shall also call indices. Let F (a1, a2, . . . , an)

be a scalar dimensionally regularized [1] Feynman integral corresponding to a given graph

and labelled by the (integer) indices, ai:

F (a1, . . . , an) =

∫

· · ·
∫

ddk1 . . . ddkh

Ea1

1 . . . Ean
n

, (1.1)

where ki, i = 1, . . . , h, are loop momenta and the denominators are given by

Er =
∑

i≥j≥1

Aij
r pi · pj − m2

r , (1.2)

with r = 1, . . . , n. The matrix Aij
r depends on the choice of the loop momenta. The

momenta pi are either the loop momenta pi = ki, i = 1, . . . , h, or independent external

momenta ph+1 = q1, . . . , ph+n = qN of the graph. Irreducible polynomials in the numer-

ator can be represented as denominators raised to negative powers. For example, the
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denominator corresponding to the propagator of a massless particle is k2 = k2
0 −~k2. Usual

prescriptions k2 = k2 + i0, etc. are implied. Formally, dimensional regularization [1] is

denoted by the change d4k = dk0d~k → ddk, where d = 4 − 2ε is a general complex num-

ber. The Feynman integrals are functions of the masses, mi, and kinematic invariants,

qi · qj . However, we shall omit this dependence because we shall pay special attention to

the dependence on the indices. We shall also omit the dependence on d.

A straightforward strategy is to evaluate, by some methods, every scalar Feynman

integral resulting from the given graph. If the number of these integrals is small this

strategy is quite reasonable. In non-trivial situations, where the number of different scalar

integrals can be at the level of hundreds and thousands, this strategy looks too complicated.

A well-known optimal strategy here is to derive, without calculation, and then apply some

relations between the given family of Feynman integrals as recurrence relations. A well-

known standard way to obtain such relations is provided by the method of integration by

parts (IBP) [2] which is based on the fact that any dimensionally regularized integral of

the form
∫

ddk1d
dk2 . . .

∂f

∂kµ
i

(1.3)

is equal to zero. Here f is the integrand in (1.1). More precisely, one tries to use IBP

relations in order to express a general dimensionally regularized integral of the given family

as a linear combination of some ‘irreducible’ integrals which are also called master integrals.

Therefore the whole problem decomposes into two parts: the construction of a reduction

algorithm and the evaluation of the master Feynman integrals.

There were several recent attempts to make the reduction procedure systematic:

(i) Using the fact that the total number of IBP equations grows faster than the number

of independent Feynman integrals, when one increases the total power of the numerator

and denominator, one can sooner or later obtain an overdetermined system of equations [3,

4] which can be solved. (There is a public version of implementing the corresponding

algorithm on a computer [5].)

(ii) Using relations that can be obtained by tricks with shifting dimension [6].

(iii) Baikov’s method [7].

Another attempt in this direction is based on the use of Gröbner bases [9]. The first

attempt to apply the theory of Gröbner bases in the reduction problems for Feynman

integrals was made in [10], where IBP relations were reduced to differential equations.

To do this, it is assumed that there is a non-zero mass for each line. For differential

equations one can then apply some standard algorithms for constructing corresponding

Gröbner bases.

In [10, 11] it was pointed out that the straightforward implementation of the Buch-

berger algorithm in the case of IBP relations is problematic because it requires a lot of

computer time even in simple examples. One of the possible modifications is related to

the Janet bases [12]. We are going to modify the Buchberger algorithm in another way,

taking into account explicitly such properties as boundary conditions (which characterize

all the regions of indices where the Feynman integrals are equal to zero), so that it will be

possible to apply it to solve the reduction problem in complicated situations.
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In the next section, we shall briefly describe what the Gröbner basis and the Buchberger

algorithm are in the classical problem related to solving systems of algebraic equations. In

section 3, we shall turn to IBP relations and describe our strategy of constructing Gröbner

bases associated with the given problem, with the help of a modification of the standard

Buchberger algorithm. We shall explain how these results can be applied to solve IBP

relations. We shall illustrate our strategy, through various examples, in section 4. In

particular, we shall apply our algorithm to a family of three-loop Feynman integrals with

a one-loop insertion relevant to the three-loop quark potential. We shall also evaluate the

master integrals using the method based on Mellin-Barnes representation. In Conclusion,

we shall characterize the status and perspectives of our method.

2. Gröbner basis and Buchberger algorithm

The notion of the Gröbner basis was invented by Buchberger [9] when he constructed an

algorithm to answer certain questions on the structure of ideals of polynomial rings.

Let A = C[x1, . . . , xn] be the commutative ring of polynomials of n variables x1, . . . , xn

over C and I ⊂ A be an ideal1. A classical problem is to construct an algorithm that shows

whether a given element g ∈ A is a member of I or not. A finite set of polynomials in I is

said to be a basis of I if any element of I can be represented as a linear combination of its

elements, where the coefficients are some elements of A. Let us fix a basis {f1, f2, . . . , fk}
of I. The problem is to find out whether there are polynomials r1, . . . , rk ∈ A such that

g = r1f1 + . . . + rkfk.

Let n = 1. In this case any ideal is generated by one element f = a0 + a1x + a2x
2 +

. . .+amxm. Now if we want to find out whether an element g = b0 + b1x+ b2x
2 + . . .+ blx

l

can be represented as rf we first check if l ≥ m. If so, we replace g with g− (bl/am)xl−mf ,

‘killing’ the leading term of g. This procedure is repeated until the degree of a ‘current’

polynomial obtained from g becomes less than m. It is clear that the resulting polynomial

is equal to zero if and only if g can be represented as rf .

Now let n > 1. Let us consider an algorithm that will answer this problem for some

bases of the ideal. (We will see later that this problem can be solved if we have a so-called

Gröbner basis at hand.) To describe it, one needs the notion of an ordering of monomials

cxi1
1 . . . xin

n where c ∈ C and the notion of the leading term (an analogue of the intuitive

one in the case n = 1). In the simplest variant of lexicographical ordering, a set (i1, . . . , in)

is said to be higher than a set (j1, . . . , jn) if there is l ≤ n such that i1 = j1, i2 = j2, . . . ,

il−1 = jl−1 and il > jl. The ordering is denoted as (i1, . . . , in) Â (j1, . . . , jn). We shall also

say that the corresponding monomial cxi1
1 . . . xin

n is higher than the monomial c′xj1
1 . . . xjn

n .

One can introduce various orderings, for example, the degree-lexicographical order-

ing, where (i1, . . . , in) Â (j1, . . . , jn) if
∑

ik >
∑

jk, or
∑

ik =
∑

jk and (i1, . . . , in) Â
(j1, . . . , jn) in the sense of the lexicographical ordering. The only two axioms that the

1A non-empty subset I of a ring R is called a left (right) ideal if (i) for any a, b ∈ I one has a + b ∈ I

and (ii) for any a ∈ I, c ∈ R one has ca ∈ I (ac ∈ I respectively). In the case of commutative rings there

is no difference between left and right ideals.
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ordering has to satisfy are that 1 is the only minimal element under this ordering and that

if f1 Â f2 then gf1 Â gf2 for any g.

Let us fix an ordering. The leading term (under this ordering) of a polynomial

P (x1, . . . , xn) =
∑

ci1,...,inxi1
1 . . . xin

n

is the non-zero monomial ci0
1
,...,i0n

x
i0
1

1 . . . x
i0n
n such that the degree (i01, . . . , i

0
n) is higher than

the degrees of other monomials in P . Let us denote it by P̂ . We have P = P̂ + P̃ , where

P̃ is the sum of the remaining terms.

Let us return to the problem formulated above. Suppose that the leading term of the

given polynomial g is divisible by the leading term or some polynomial of the basis, i.e.

ĝ = Qf̂i where Q is a monomial. Let g1 = g−Qfi. It is clear that the leading term of g1 is

lower than the leading term of g and that g1 ∈ I if and only if g ∈ I. One can go further

and proceed with g1 as with g, using the same fi or some other element fj of the initial

basis, and obtain similarly g2, g3, . . .. The procedure is repeated until one obtains gl ≡ 0

or an element gl such that ĝk is not divisible by any leading term f̂i. We will say that g is

reduced to gl modulo the basis {f1, f2, . . . , fk}.
A basis {f1, f2, . . . , fk} is called a Gröbner basis of the given ideal if any polynomial

g ∈ I is reduced by the described procedure to zero for any sequence of reductions. Given

a Gröbner basis we obtain an algorithm to verify whether an element g ∈ A is a member

of I. There are many other questions on the structure of the ideal that can be answered

constructively if one has a Gröbner basis, but they are beyond the topic of the paper.

Generally a basis is not a Gröbner basis. Let f1 = x1 and f2 = 1 + x2
2 and let I be

generated by f1 and f2. It is easy to verify that {f1, f2} is a Gröbner basis of I. Now let

f ′
1 = x1x2. The set {f ′

1, f2} is again a basis of I (indeed, f ′
1 = x2f1 and f1 = −x2f

′
1+x1f2).

However, {f ′
1, f2} is not a Gröbner basis because the element x1 ∈ I cannot be reduced

modulo {f ′
1, f2}.

On the other hand, given any initial basis {f1, f2, . . . , fk} of the ideal I one can con-

struct a Gröbner basis starting from it and using the Buchberger algorithm which consists

of the following steps.

Suppose that f̂i = wqi and f̂j = wqj where w, qi and qj are monomials and w is not

a constant. Define fi,j = fiqj − fjqi. Reduce this polynomial modulo the set {fi} as

described above. If one obtains a non-zero polynomial by this reduction, add it to the set

{fi}. Consider then the other elements with f̂ ′
i = wq′i and f̂ ′

j = w′q′j for some non-constant

w′. If there is nothing to do according to this procedure one obtains a Gröbner basis. It

has been proven by Buchberger [9] that such a procedure stops after a finite number of

steps.

The Buchberger algorithm can take much computer time to construct a Gröbner basis,

but once it has been constructed, one can use the reduction procedure which works generally

much faster.

To conclude, the problem formulated in the beginning of this section can be solved by

choosing an ordering and constructing the corresponding Gröbner basis using the Buch-
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berger algorithm. After that, one applies the reduction procedure modulo the constructed

Gröbner basis to verify whether a given element belongs to the given ideal I.

3. Reduction problem for Feynman integrals

Practically, one uses relations (1.3) of the following form:
∫

. . .

∫

ddk1d
dk2 . . .

∂

∂ki

(

pj
1

Ea1

1 . . . EaN

N

)

= 0 . (3.1)

Here Er are denominators in (1.1), k1, . . . , kh are loop momenta and p1 = k1, . . . , ph =

kh, ph+1 = q1, . . . , ph+n = qn, where q1, . . . , qn are independent external momenta.

After the differentiation, resulting scalar products, ki · kj and ki · qj are expressed in

terms of the factors in the denominator, by inverting (1.2), and one arrives at IBP relations

which can be written as
∑

ciF (a1 + bi,1, . . . , an + bi,n) = 0 , (3.2)

where bi,j are integer, ci are polynomials in aj, d, masses mi and kinematic invariants,

and F (a1, . . . , an) are Feynman integrals (1.1) of the given family. These relations can be

written in terms of shift operators i+ and i− which are defined as

i± · F (a1, a2, . . . , an) = F (a1, . . . , ai−1, ai ± 1, ai+1, . . . , an) .

At this point, we would like to turn from the ‘physical’ shift operators i± to ‘math-

ematical’ shift operators. (We believe that the physical notation can be ambiguous: for

example, it is not immediately clear whether the operators are applied to a function of the

indices, or to some of its values.)

Let K be the field of rational functions of physical variables mi, qi · qj, d, and A be the

algebra2 over K generated by elements Yi, Y −1
i and Ai with the following relations:

YiYj = YjYi, AiAj = AjAi, YiAj = AjYi + δi,jYi, (3.3)

Y −
i Y −

j = Y −
j Y −

i , Y −
i Yj = YjY

−
i , Y −

i Aj = AjY
−
i − δi,jYi, Y −

i Yi = 1

where δi,j = 1 if i = j and 0 otherwise. For convenience we will write (Y −
i )k = Y −k

i . Let

F be the field of functions of n integer arguments a1, a2, . . . , an. The algebra A acts on

this field3, where

(Yi · F )(a1, a2, . . . , an) = F (a1, . . . , ai−1, ai + 1, ai+1, . . . , an) , (3.4)

(Ai · F )(a1, a2, . . . , an) = aiF (a1, a2, . . . , an) .

Let us turn back to the problem of calculating Feynman integrals. The left-hand sides

of relations (3.2) can be represented as elements of the ring A applied to F ; we will denote

these elements by f1, . . . , fn. Now, for F (a1, . . . , an) defined by (1.1), we have

fi · F = 0 or (fi · F )(a1, . . . , an) = 0 (3.5)

2An algebra over a field is a vector space over this field and a ring at the same time.
3(i) for any a ∈ A and f ∈ F we have an element a · f ∈ F ; (ii) for any a, b ∈ A and f, g ∈ F we have

(a + b) · (f + g) = a · f + a · g + b · f + b · g; (iii) for any a, b ∈ A and f ∈ F we have (ab) · f = a · (b · f).
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for all i. Let us generate a (left) ideal I by the elements f1, . . . , fn. We will call I the ideal

of the IBP relations. Obviously,

f · F = 0 , or (f · F )(a1, . . . , an) = 0 for any f ∈ I . (3.6)

Our goal is to express the value of F at an arbitrary point (a1, a2, . . . , an) in terms of

the values of F in a few specially chosen points, i.e. master integrals. This problem can

be solved similarly to the algebraic problem described in section 2. Consider, for example,

the case, where all the indices ai are positive. Then one has

F (a1, a2, . . . , an) = (Y a1−1
1 . . . Y an−1

n · F )(1, 1, . . . , 1) . (3.7)

The idea of the method is to reduce the monomial Y a1−1
1 . . . Y an−1

n modulo the ideal of IBP

relations. Let us consider a trivial example of such a situation.

Example 1 . One-loop vacuum massive Feynman integrals

F (a) =

∫

ddk

(k2 − m2)a
. (3.8)

Let us forget that these integrals can be evaluated explicitly, in terms of gamma functions.

The IBP identity
∫

ddk
∂

∂k
· k 1

(k2 − m2)a
= 0 , (3.9)

leads to the relation

(d − 2a + 2)F (a − 1) − 2(a − 1)m2F (a) = 0 . (3.10)

We see that any Feynman integral F (a) where a > 1 can be expressed recursively in terms

of one integral F (1) ≡ I1 which we therefore qualify as a master integral. (Observe that all

the integrals with non-positive integer indices are integrals without scale and are naturally

put to zero within dimensional regularization.)

Let us demonstrate how the reduction procedure can lead to the same result. (We

realize that this way is more complicated in this simple situation. However, we will see

later that its generalization provides simplifications and enables us to solve complicated

problems.) The IBP relation (3.10) gives us one element f = 2m2AY − (d− 2A) ∈ A (the

element (f · F )(a − 1) is the left-hand side of (3.10)). Set I = Af (for any g ∈ A and

F ∈ F we have gf · F=0). We have

2m2(A + a − 2)Y a−1 = (2m2(A + a − 2)Y a−1 − Y a−2f) + Y a−2f

= (2m2(A + a − 2)Y a−1 − Y a−2(2m2AY − (d − 2A))) + Y a−2f

= Y a−2(d − 2A) + Y a−2f = (d − 2A − 2a + 4)Y a−2 + Y a−2f . (3.11)

The relation 2m2(A+a− 2)Y a−1 = (d− 2A− 2a+4)Y a−2 +X1, where X1 ∈ I, represents

one step of the reduction procedure. If we stop the reduction at this point, we get

2m2(a − 1)F (a) = (2m2(a − 1) · F )(a) = (2m2(A + a − 2)Y a−1 · F )(1)

= ((d − 2A − 2a + 4)Y a−2) · F )(1) + (Y a−2f · F )(1)

= (d − 2a + 2)F (a − 1) + ((A − 1)Y a−2 · F )(1)

= (d − 2a + 2)F (a − 1) , (3.12)

– 6 –
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i.e. the equation (3.10) we started from. But moving further with the reduction modulo I
we obtain

P1(A, a,m)Y a−1 = P2(A, a,m) + X ′ , (3.13)

where P1 and P2 are polynomials obtained during the reduction and X ′ ∈ I (note that

this algorithm is constructive and is realized as a computer code). Now we can apply this

equation to F and take the value at 1:

P1(1, a,m)F (a) = (P1(A, a,m)Y a−1 · F )(1)

= ((P2(A, a,m) + X ′) · F )(1) = P2(1, a,m)F (1) . (3.14)

It is enough to notice that P1 is a product of the leading coefficients (the formal

definition in the non-commutative case will be given later) of f , Y f and so on. Thus

P1(1, a,m) is the product of the leading coefficient 2m2A of f with A replaced with all

integers from 1 to a− 1, hence non-zero. After dividing by this value we obtain the needed

representation.

Thus it looks tempting to generalize the standard reduction procedure and reduce

the monomial Y a1−1
1 . . . Y an−1

n so that the resulting polynomial has a smaller degree in a

certain sense. In this case we would represent F (a1, a2, . . . , an) as a linear combination of

F (a′1, a
′
2, . . . , a

′
n) for ‘smaller’ a′i.

This method works indeed, but first we need to introduce some notation. We will say

that an element X ∈ A is written in the proper form if it is represented as

X =
∑

cj(A1, . . . , An)
∏

i

Y
di,j

i , (3.15)

where cj are polynomials and di,j are integers. (So, all the operators Ai are placed on

the left from the operators Yi.) Obviously any element X ∈ A has a unique proper form.

We will say that an element of A is a monomial if in its proper form only one coefficient

function cj is non-zero. We will say that the degree of a monomial c(A1, . . . , An)
∏

i Y
di

i is

{d1, . . . , dn}. We will say that a monomial c(A1, . . . , An)
∏

i Y
di

i is divisible by a monomial

c′(A1, . . . , An)
∏

i Y
d′i
i if d′i ≥ di for all i.

Let us define a subalgebra A+ ⊂ A generated as an algebra by Yi and Ai (but not Y −1
i )

and set I+ = I ∩ A+. Obviously, I+ is an ideal in A+ and AI+ = I. In the same way

as in the classical situation, we introduce the notion of an ordering, leading term, highest

degree of an element of A+ and the reduction modulo an ideal. The only problem is that

the leading coefficient of an element of A+ is now a polynomial function, so it does not

generally have an inverse element. Thus the reduction procedures lead us to a relation

c0(A1, . . . , An)Y a1−1
1 . . . Y an−1

n =
∑

j

cj(A1, . . . , An)
∏

i

Y
di,j

i + X ′, (3.16)

where X ′ ∈ I, ci are polynomials in Aj , and none of the monomials on the right-hand side

of the relation is divisible by a leading monomial of an element of the basis I+. Applying

this equality to F and taking the value at (1, . . . , 1) we derive

q0F (a1, . . . , an) =
∑

j

qjF (d1,j + 1, . . . , dn,j + 1) , (3.17)
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where qi do not depend on aj. In the case where q0 is non-zero we can divide by it and

obtain the desired representation.

As in the classical situation, one says that a finite set {f1, . . . , fk} is a Gröbner basis

of an ideal I if any element f ∈ I is reduced by this procedure to zero. The number of

different degrees {d1, . . . , dn} arising on the right-hand side of (3.16) is minimal possible if

we have a Gröbner basis. A Gröbner basis for the ideal of IBP relations can be constructed

using the Buchberger algorithm (a generalization of the algorithm explained in section 2).

Let us now illustrate these points using a very simple

Example 2. The family of one-loop massless propagator integrals

F (a1, a2) =

∫

ddk

(k2)a1((q − k)2)a2

. (3.18)

We have the boundary conditions, F (a1, a2) = 0 if a1 ≤ 0 or a2 ≤ 0, which correspond to

putting to zero any integral without scale within dimensional regularization. As it is well

known, this integral can be evaluated explicitly:

F (a1, a2) = iπd/2 (−1)a1+a2Γ(a1 + a2 + ε − 2)Γ(2 − ε − a1)Γ(2 − ε − a2)

(−q2)a1+a2−2+εΓ(a1)Γ(a2)Γ(4 − a1 − a2 − 2ε)
, (3.19)

but let us forget about this and consider the problem of the reduction to master integrals.

The two IBP identities
∫

ddk
∂

∂k

(

l
1

(k2)a1((q − k)2)a2

= 0

)

, (3.20)

with l = k and l = q give the following two IBP relations

d − 2a1 − a2 − a22
+(1− − q2) = 0 , (3.21)

a2 − a1 − a11
+(q2 − 2−) − a22

+(1− − q2) = 0 . (3.22)

These relations are defined by the elements

f1 = d − 2a1 − a2 − a2Y2(Y
−1
1 − q2) , (3.23)

f2 = (a2 − a1)Y1Y2 − a1Y1(q
2 − Y −1

2 ) − a2Y2(Y
−1
1 − q2) . (3.24)

which generate the ideal of IBP relations. Let us multiply (3.23) by Y1 and (3.24) by Y1Y2

to obtain a basis of I+ ∈ A+:

f ′
1 = (d − 2a1 − a2 − 2)Y1 − a2Y2(1 − q2Y1) , (3.25)

f ′
2 = a2 − a1 − (a1 + 1)Y 2

1 (q2Y2 − 1) + (a2 + 1)Y 2
2 (q2Y1 − 1) . (3.26)

If we introduce an ordering for polynomials in the operators Yi and define the corre-

sponding reduction procedure modulo the operators f ′
1 and f ′

2 we shall obtain the possibility

to represent any given monomial as

Y a1−1
1 Y a2−1

2 = r1f
′
1 + r2f

′
2 +

∑

cijY
i−1
1 Y j−1

2 , (3.27)
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where r1 and r2 are some elements of the ring A. So, if we act by this relation on F and

take the value at (1, 1) we shall obtain

F (a1, a2) =
∑

i,j

cijF (i, j) . (3.28)

We discover, however, that the set of integrals that appear on the right-hand side

of these relations obtained for various a1 and a2 is infinite. The Buchberger algorithm

described in section 2 leads, with the degree-lexicographic order, to the Gröbner basis

consisting of the following two elements:

g1 = 2a1Y1 − da1Y1 + 2a2
1Y1 − 2a2Y2 + da2Y2 − 2a2

2Y2 (3.29)

g2 = 4a1Y1 − 4da1Y1 + d2a1Y1 + 8a2
1Y1 − 4da2

1Y1 + 4a3
1Y1 + 2a1a2Y1

−da1a2Y1 + 2a2
1a2Y1 + 2a1a2Y2 − da1a2Y2 + 2a2

1a2Y2 − 4q2a2Y
2
2

+dq2a2Y
2
2 − 6q2a2

2Y
2
2 + dq2a2

2Y
2
2 − 2q2a3

2Y
2
2 . (3.30)

Now, the reduction modulo these two elements provides only a finite number of inte-

grals in the corresponding relations (3.28). In fact, the degree of g1 is (1, 0) and the degree

of g2 is (0, 2), so we meet just the two integrals in this set, F (1, 1) and F (1, 2), and call

them master integrals. For example, we have

F (2, 3) =
(d − 8)(d − 5)

2q2
F (1, 2) . (3.31)

However, we do not obtain a connection of F (1, 1) and F (1, 2), although we know, due to

explicit solutions of the reduction procedure, that they are connected. This is a disturbing

point. Of course, it is preferable to have only one master integral in this trivial example, so

that we are going to develop an algorithm which reveals a minimal number of the master

integrals at least in simple examples.

Starting from example 3, we will have at least one more complication: the variables

ai, generally, can be not only positive but also negative. (In the previous example, a1 and

a2 were positive due to the boundary conditions.) Generally, we have to consider each

variable ai to be either positive or non-positive. Of course, for every family of Feynman

integrals, there will be some boundary conditions. (In particular, if all the arguments ai

are non-positive any Feynman integral is zero.)

Thus, if we have a family of Feynman integrals, F (a1, . . . , an), we are going to consider

each variable ai to satisfy ai > 0 or ai ≤ 0. Consequently, we have to consider 2n regions

that we shall call sectors and label them by subsets ν ⊆ {1, . . . , n}. The corresponding

sector σν is defined as {(a1, . . . , an) : ai > 0 if i ∈ ν , ai ≤ 0 if i 6∈ ν}.
In the sector where all ai are positive, we considered the ring A+ ⊂ A and the operators

Yi as basic operators. (See the previous example.) Quite similarly, in a given sector σν

it is natural to consider the subalgebra Aν ⊂ A generated by the operators Ai and the

operators Yi for i ∈ ν and Y −1
i for other i. Within this definition we have A{1,...,n} = A+.

Thus the first idea is to construct a Gröbner basis for each of the 2n sectors, or at

least for all non-trivial sectors. (We call a sector trivial if all the given Feynman integrals
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are identically zero in it due to boundary conditions.) This approach however faces many

problems:

1. Each of the non-trivial sectors will give us at least one point where we have to evaluate

F ;

2. The number of points where we have to evaluate F in a given sector is generally

greater than the real number of master integrals (In the last example there is only

one master integral but we obtain F (1, 1) and F (1, 2) after the reduction);

3. Even if one has constructed all the needed bases, the reduction may fail in cases

where the coefficient q0 in eq. (3.17) is zero. This problem arises because all leading

coefficients are polynomials in Ai, so that they can be equal to zero at certain points;

4. Although the method leads us theoretically to constructing a Gröbner basis, all known

practical implementations fail to work even already in four-dimensional examples.

Therefore this specialization of the Buchberger algorithm turns out to be completely

impractical in sufficiently complicated examples. Our algorithm is a certain modification

of the Buchberger algorithm. To characterize it we need to introduce some notation.

Let A(ν) = ⊕ν′⊆νAν′ ⊂ A. First of all let us define a sector-reduction, or s-reduction

of an element f ∈ A(ν) modulo a basis of the ideal Iν = I ∩ Aν . Take the proper form of

f and let f ν be the sum of the terms in this decomposition that lie in Aν . If f ν is equal

to zero the s-reduction stops. Otherwise we look for a monomial g ∈ A(ν) and a coefficient

c ∈ K such that the degrees of f and gfi for some element of the bases fi coincide, that

(cf −gfi)
ν is zero or its degree is smaller and that the value of c at the point (a1, . . . , an) is

non-zero, where ai = 1 if i ∈ ν and 0 otherwise. The procedure is repeated while possible.

A sector basis, or, an s-basis for a sector σν is a basis of the ideal Iν such that the

number of possible degrees f ν, where f is the result of the s-reduction, is finite. Such a

basis provides the possibility of a reduction to master integrals and integrals whose indices

lie in lower sectors, i.e. σν′ for ν ′ ⊂ ν.

To prove that an s-basis always exists is an open problem, but in all our examples they

do exist, and it turns out that in all known examples where one can construct a Gröbner

basis it is an s-basis as well, although this does not follow from the definition.

If ν = ∅ then an s-basis is a Gröbner basis but generally it is not. Since the sector σ∅ is

trivial, we do not have to construct a single Gröbner bases. Still, it is most complicated to

construct s-bases for minimal sectors (a sector σν is said to be minimal if it is non-trivial

but all lower sectors are trivial).

Having constructed s-bases for all non-trivial sectors we have an algorithm to evaluate

F at any point. Indeed, we choose a sector containing the point we need, run the s-

reduction algorithm for this sector, expressing F in terms of some master integrals and

values for lowers sectors, then repeat the procedure for all those sectors. Eventually we

reduce F to the master integrals.

The Buchberger algorithm leads us to constructing a Gröbner basis that is hopefully

an s-basis, but this has no use for us since this does not simplify anything. The second
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important point is that the Buchberger algorithm can be terminated when the Gröbner

basis is not yet constructed but the ‘current’ basis already provides us the s-reduction, so

that it is an s-basis (we have criteria that show whether a basis is an s-basis).

Let us illustrate how this idea works on the same example. The initial basis turns

out to be an s-basis. First, let us observe that the degree of f ′
1 is (1, 1) and the leading

coefficient is q2a2, i.e. is a non-zero function in the positive sector, hence we are capable of

making reduction steps if the highest degree of an element being reduced is different from

(l, 0) and (0, l). Now let f be a polynomial whose highest degree is (l, 0) and the leading

coefficient is c. Then

f ′ = q2(l − 1 + a1)f + cY l−2
1 Y −1

2 f ′
2 (3.32)

is an element of A. Let us take the proper form of f (implying that the numbers di,j can be

now negative) and calculate its highest degree without paying attention to the terms with

negative di,j . Obviously it is smaller than the degree of f . Now if we take the value of f ′

at (1, 1) we will have the elements like F (j, 0) among others. But the boundary conditions

state that they are equal to zero, so that we have nothing to worry about. Now we can

move further and reduce f ′ as we did before. Finally we get

f = X + c(A1, A2) + Y (3.33)

where X ∈ I, c is a rational function and Y is an element of A such that in its proper form

there are no degrees d1, d2 with d1 ≥ 0 and d2 ≥ 0. Taking the value at (1, 1) we obtain

the reduction of any value of F to the value of the master integral F (1, 1). (See also [13].)

4. Examples

Let us consider a modification of Example 2; now we have a non-zero mass m1 = m:

Example 3. Propagator integrals with the masses m and 0,

F (a1, a2) =

∫

ddk

(k2 − m2)a1 [(q − k)2]a2

. (4.1)

The integrals are zero if a1 ≤ 0. The corresponding IBP relations generate the following

elements:

f1 = d − 2a1 − a2 − 2m2a1Y1 − m2a2Y2 + q2a2Y2 − a2Y2Y
−1
1

f2 = a2 − a1 − m2a1Y1 − q2a1Y1 − m2a2Y2 + q2a2Y2 − a2Y2Y
−1
1 + a1Y1Y

−1
2 .

We have to consider two sectors, σ{1,2} and σ{1}.

Using the lexicographical ordering, we obtain, for the sector σ{1,2}, the s-basis consist-

ing of two elements:

g11 = Y 2
1 + a1Y

2
1 + 3Y1Y2 − dY1Y2 + a1Y1Y2 + 2a2Y1Y2 + m2Y 2

1 Y2

−q2Y 2
1 Y2 + m2a1Y

2
1 Y2 − q2a1Y

2
1 Y2 ,

g12 = −3Y1Y2 + dY1Y2 − 2a1Y1Y2 − a2Y1Y2 − 2m2Y 2
1 Y2 − 2m2a1Y

2
1 Y2 − Y 2

2

−a2Y
2
2 − m2Y1Y

2
2 + q2Y1Y

2
2 − m2a2Y1Y

2
2 + q2a2Y1Y

2
2 .
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Figure 1: Two-loop propagator diagram.

For the sector σ{1}, we obtain the following s-basis:

g21 = 1 − a2 + m2Y1 − q2Y1 − m2a2Y1 + q2a2Y1 − Y1Y
−1
2 + dY1Y

−1
2 − 2a1Y1Y

−1
2

−a2Y1Y
−1
2 − 2m2Y 2

1 Y −1
2 − 2m2a1Y

2
1 Y −1

2 ,

g22 = −2m2 + 2m2a2 − 2m4Y1 + 2m2q2Y1 + 2m4a2Y1 − 2m2q2a2Y1 − 2Y −1
2 + a2Y

−1
2

+2m2Y1Y
−1
2 + 2q2Y1Y

−1
2 + 2m2a1Y1Y

−1
2 − m2a2Y1Y

−1
2 − q2a2Y1Y

−1
2

+2m4Y 2
1 Y −1

2 + 2m2q2Y 2
1 Y −1

2 + 2m4a1Y
2
1 Y −1

2 + 2m2q2a1Y
2
1 Y −1

2

−dY1Y
−2
2 + 2a1Y1Y

−2
2 + a2Y1Y

−2
2 .

The reduction based on the two constructed s-sectors reveals two master integrals, F (1, 1)

and F (1, 0), in accordance with results obtained by other ways. (See, e.g., Chapters 5

and 6 of [15] and [13].)

Example 4. Two-loop massless propagator diagram of figure 1.

The corresponding family of Feynman integrals is

F (a1, a2, a3, a4, a5) =

∫ ∫

ddk ddl

(k2)a1 [(q − k)2]a2(l2)a3 [(q − l)2]a4 [(k − l)2]a5

. (4.2)

There are boundary conditions which correspond to setting to zero integrals without scale:

F (a1, a2, a3, a4, a5) = 0 , if ai, a5 ≤ 0 for i = 1, . . . , 4, or a1, a2 ≤ 0, or a3, a4 ≤ 0, or

a1, a3 ≤ 0, or a2, a4 ≤ 0. The integrals are symmetrical:

F (a1, a2, a3, a4, a5) = F (a2, a1, a4, a3, a5) = F (a3, a4, a1, a2, a5) .

The corresponding IBP relations generate the following elements:

f1 = (d − 2a1 − a2 − a5) + a2Y2(q
2 − Y −1

1 ) − a5Y5(Y
−1
1 − Y −1

3 ) ,

f2 = (d − a2 − 2a3 − a5) + a4Y4(q
2 − Y −1

3 ) − a5Y5(Y
−1
3 − Y −1

1 ) ,

f3 = (d − a1 − a2 − 2a5) + a1Y1(Y
−1
3 − Y −1

5 ) + a2Y2(Y
−1
4 − Y −1

5 ) ,

f4 = (d − a3 − a4 − 2a5) + a3Y3(Y
−1
1 − Y −1

5 ) + a4Y4(Y
−1
2 − Y −1

5 ) ,

f5 = (d − a1 − 2a2 − a5) + a1Y1(q
2 − Y −1

2 ) − a5Y5(Y
−1
2 − Y −1

4 ) ,

f6 = (d − a3 − 2a4 − a5) + a3Y3(q
2 − Y −1

4 ) − a5Y5(Y
−1
4 − Y −1

2 ) .
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As is well known, any integral of this class can be reduced, due to IBP relations, in a

very simple way, to integrals where at least one of the indices is non-positive. Such integrals

can be evaluated recursively in terms of gamma functions using the one-loop integration

formula (3.19). Let us point out that physicists often stop the reduction whenever they

arrive at integrals expressed in terms of gamma functions. Imagine, however, that we want

to know the whole solution of the reduction procedure, i.e. a reduction to a minimal number

of the master integrals. Then this example turns out be not so trivial and provides a good

possibility to test our algorithms.

This can be done in various ways. In our approach, we apply our algorithm to construct

s-bases corresponding to the sectors σ{1,2,3,4,5}, σ{2,3,4,5} as well as three more (symmetri-

cal) sectors, the minimal sector σ{1,2,3,4}, the minimal sector σ{2,3,5} as well as one more

(symmetrical) sector. In the first three cases, we used the degree-lexicographical ordering,

and in the last case, some special ordering.

For example, let us present the s-basis associated with σ{1234}:

g1 = 2Y1Y2Y3Y
−1
5 − a5Y1Y2Y3Y

−1
5 − 2Y1Y2Y4Y

−1
5 + a5Y1Y2Y4Y

−1
5 − 2Y1Y3Y4Y

−1
5

+a5Y1Y3Y4Y
−1
5 + 2Y2Y3Y4Y

−1
5 − a5Y2Y3Y4Y

−1
5 + 2q2Y1Y2Y3Y4Y

−1
5

−q2a5Y1Y2Y3Y4Y
−1
5 + 2q2Y1Y2Y

2
4 Y −1

5 − q2a5Y1Y2Y
2
4 Y −1

5 − 2q2Y1Y3Y
2
4 Y −1

5

+q2a5Y1Y3Y
2
4 Y −1

5 − 2q2Y2Y3Y
2
4 Y −1

5 + q2a5Y2Y3Y
2
4 Y −1

5 − (q2)2Y1Y2Y3Y
2
4 Y −1

5

+d(q2)2Y1Y2Y3Y
2
4 Y −1

5 − (q2)2a3Y1Y2Y3Y
2
4 Y −1

5 − (q2)2a4Y1Y2Y3Y
2
4 Y −1

5

−2(q2)2a5Y1Y2Y3Y
2
4 Y −1

5 + (q2)2Y2Y
2
3 Y 2

4 Y −1
5 + (q2)2a3Y2Y

2
3 Y 2

4 Y −1
5

+2(q2)2Y1Y3Y
3
4 Y −1

5 + (q2)2a4Y1Y3Y
3
4 Y −1

5 − Y1Y2Y
2
3 Y −2

5 − a3Y1Y2Y
2
3 Y −2

5

+a3Y1Y2Y3Y4Y
−2
5 − a4Y1Y2Y3Y4Y

−2
5 + Y1Y2Y

2
4 Y −2

5 + a4Y1Y2Y
2
4 Y −2

5

−6q2Y1Y2Y3Y
2
4 Y −2

5 + 2dq2Y1Y2Y3Y
2
4 Y −2

5 − 3q2a3Y1Y2Y3Y
2
4 Y −2

5

−4q2a4Y1Y2Y3Y
2
4 Y −2

5 − 2q2a5Y1Y2Y3Y
2
4 Y −2

5 − 2q2Y1Y2Y
3
4 Y −2

5

−q2a4Y1Y2Y
3
4 Y −2

5 ,

g2 = Y1Y2Y
2
4 − a5Y1Y2Y

2
4 − Y2Y3Y

2
4 + a5Y2Y3Y

2
4 − 3Y1Y2Y3Y

2
4 Y −1

5

+dY1Y2Y3Y
2
4 Y −1

5 − 2a3Y1Y2Y3Y
2
4 Y −1

5 − a4Y1Y2Y3Y
2
4 Y −1

5 − a5Y1Y2Y3Y
2
4 Y −1

5

−2Y1Y2Y
3
4 Y −1

5 − a4Y1Y2Y
3
4 Y −1

5 + 2q2Y1Y2Y3Y
3
4 Y −1

5 + q2a4Y1Y2Y3Y
3
4 Y −1

5 ,

g3 = −Y1Y2Y3Y4 + a5Y1Y2Y3Y4 + Y1Y2Y
2
4 − a5Y1Y2Y

2
4 + Y1Y3Y

2
4 − a5Y1Y3Y

2
4

−Y2Y3Y
2
4 + a5Y2Y3Y

2
4 + Y1Y2Y

2
3 Y4Y

−1
5 + a3Y1Y2Y

2
3 Y4Y

−1
5 + Y1Y2Y3Y

2
4 Y −1

5

−a3Y1Y2Y3Y
2
4 Y −1

5 + a4Y1Y2Y3Y
2
4 Y −1

5 − q2Y1Y2Y
2
3 Y 2

4 Y −1
5 − q2a3Y1Y2Y

2
3 Y 2

4 Y −1
5

−2Y1Y2Y
3
4 Y −1

5 − a4Y1Y2Y
3
4 Y −1

5 + 2q2Y1Y2Y3Y
3
4 Y −1

5 + q2a4Y1Y2Y3Y
3
4 Y −1

5 ,

g4 = −Y1Y2Y
2
4 + a5Y1Y2Y

2
4 + Y2Y3Y

2
4 − a5Y2Y3Y

2
4 − 2Y1Y2Y3Y

2
4 Y −1

5

+dY1Y2Y3Y
2
4 Y −1

5 − 2a1Y1Y2Y3Y
2
4 Y −1

5 − a2Y1Y2Y3Y
2
4 Y −1

5 − a5Y1Y2Y3Y
2
4 Y −1

5

−Y 2
2 Y3Y

2
4 Y −1

5 − a2Y
2
2 Y3Y

2
4 Y −1

5 + q2Y1Y
2
2 Y3Y

2
4 Y −1

5 + q2a2Y1Y
2
2 Y3Y

2
4 Y −1

5 ,

g5 = Y1Y2Y3Y4 − a5Y1Y2Y3Y4 − Y1Y2Y
2
4 + a5Y1Y2Y

2
4 − Y1Y3Y

2
4 + a5Y1Y3Y

2
4

+Y2Y3Y
2
4 − a5Y2Y3Y

2
4 + Y 2

1 Y3Y
2
4 Y −1

5 + a1Y
2
1 Y3Y

2
4 Y −1

5 − a1Y1Y2Y3Y
2
4 Y −1

5

+a2Y1Y2Y3Y
2
4 Y −1

5 − q2Y 2
1 Y2Y3Y

2
4 Y −1

5 − q2a1Y
2
1 Y2Y3Y

2
4 Y −1

5 − Y 2
2 Y3Y

2
4 Y −1

5
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Figure 2: Feynman diagram contributing to the three-loop static quark potential. A wavy line

denotes a propagator for the static source and the dotted line denotes the scalar propagator with

the index shifted by ε.

−a2Y
2
2 Y3Y

2
4 Y −1

5 + q2Y1Y
2
2 Y3Y

2
4 Y −1

5 + q2a2Y1Y
2
2 Y3Y

2
4 Y −1

5 ,

g6 = −q2Y1Y2Y
2
4 + q2a5Y1Y2Y

2
4 + q2Y2Y3Y

2
4 − q2a5Y2Y3Y

2
4 + 2Y1Y2Y3Y4Y

−1
5

−a5Y1Y2Y3Y4Y
−1
5 − 2Y1Y2Y

2
4 Y −1

5 + a5Y1Y2Y
2
4 Y −1

5 − 2Y1Y3Y
2
4 Y −1

5 + a5Y1Y3Y
2
4 Y −1

5

+2Y2Y3Y
2
4 Y −1

5 − a5Y2Y3Y
2
4 Y −1

5 + 2q2Y1Y2Y3Y
2
4 Y −1

5 + q2a3Y1Y2Y3Y
2
4 Y −1

5

−q2a5Y1Y2Y3Y
2
4 Y −1

5 + q2Y2Y
2
3 Y 2

4 Y −1
5 + q2a3Y2Y

2
3 Y 2

4 Y −1
5 + 2q2Y1Y2Y

3
4 Y −1

5

+q2a4Y1Y2Y
3
4 Y −1

5 + 2q2Y1Y3Y
3
4 Y −1

5 + q2a4Y1Y3Y
3
4 Y −1

5 − 2(q2)2Y1Y2Y3Y
3
4 Y −1

5

−(q2)2a4Y1Y2Y3Y
3
4 Y −1

5 − Y1Y2Y
2
3 Y4Y

−2
5 − a3Y1Y2Y

2
3 Y4Y

−2
5 − Y1Y2Y3Y

2
4 Y −2

5

+a3Y1Y2Y3Y
2
4 Y −2

5 − a4Y1Y2Y3Y
2
4 Y −2

5 + 2Y1Y2Y
3
4 Y −2

5 + a4Y1Y2Y
3
4 Y −2

5

−4q2Y1Y2Y3Y
3
4 Y −2

5 − 2q2a4Y1Y2Y3Y
3
4 Y −2

5 ,

g7 = q2Y1Y2Y
2
4 − q2a5Y1Y2Y

2
4 − q2Y2Y3Y

2
4 + q2a5Y2Y3Y

2
4 − 2Y1Y2Y3Y4Y

−1
5

+a5Y1Y2Y3Y4Y
−1
5 + q2Y1Y

2
2 Y3Y4Y

−1
5 + q2a2Y1Y

2
2 Y3Y4Y

−1
5 + 2Y1Y2Y

2
4 Y −1

5

−a5Y1Y2Y
2
4 Y −1

5 + q2Y 2
1 Y2Y

2
4 Y −1

5 + q2a1Y
2
1 Y2Y

2
4 Y −1

5 + 2Y1Y3Y
2
4 Y −1

5

−a5Y1Y3Y
2
4 Y −1

5 − 2Y2Y3Y
2
4 Y −1

5 + a5Y2Y3Y
2
4 Y −1

5 + 2q2Y1Y2Y3Y
2
4 Y −1

5

+q2a1Y1Y2Y3Y
2
4 Y −1

5 − q2a5Y1Y2Y3Y
2
4 Y −1

5 + q2Y 2
2 Y3Y

2
4 Y −1

5 + q2a2Y
2
2 Y3Y

2
4 Y −1

5

−(q2)2Y1Y
2
2 Y3Y

2
4 Y −1

5 − (q2)2a2Y1Y
2
2 Y3Y

2
4 Y −1

5 − Y 2
1 Y3Y

2
4 Y −2

5 − a1Y
2
1 Y3Y

2
4 Y −2

5

+a1Y1Y2Y3Y
2
4 Y −2

5 − a2Y1Y2Y3Y
2
4 Y −2

5 + Y 2
2 Y3Y

2
4 Y −2

5

+a2Y
2
2 Y3Y

2
4 Y −2

5 − 2q2Y1Y
2
2 Y3Y

2
4 Y −2

5 − 2q2a2Y1Y
2
2 Y3Y

2
4 Y −2

5 .

The reduction based on the constructed s-sectors reveals three master integrals, F (1, 1, 1, 1, 0),

F (0, 1, 1, 0, 1) and F (1, 0, 0, 1, 1) (the last two of them are equal because of the symmetry),

in accordance with results obtained by other ways. (See, e.g., Chapters 5 and 6 of [15].)

Our last example is

Example 5. Two-loop Feynman integrals for the heavy quark static potential corre-

sponding to figure 2 with v · q = 0.

We shall consider diagrams contributing to the three-loop static potential correspond-

ing to figure 2. They are obtained from the corresponding two-loop diagrams by inserting

a one-loop diagram into the central line. Indeed, the integration over the loop-momentum

of the insertion can be performed explicitly, by means of (3.19), and one obtains, up to
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a factor expressed in terms of gamma functions, Feynman integrals of figure 2, where the

index of the central line4 is a5 + ε ≡ a5 + (4 − d)/2 with integer a5. So, we arrive at the

following family of integrals:5

F (a1, a2, a3, a4, a5, a6, a7) =

∫ ∫

ddkddl

(−k2)a1(−l2)a2 [−(k − q)2]a3 [−(l − q)2]a4

× 1

[−(k − l)2]a5+ε(−v · k)a6(−v · l)a7

. (4.3)

We have turned to the −k2 dependence of the propagators because this choice is more

natural when at least one index, a5 + ε is not integer. The integrals are symmetrical:

F (a1, a2, a3, a4, a5, a6, a7) = F (a2, a1, a4, a3, a5, a6, a7) = F (a3, a4, a1, a2, a5, a7, a6) .

They are equal to zero, if a1, a3 ≤ 0, or a2, a4 ≤ 0, or a1, a2, a6 ≤ 0, or a3, a4, a7 ≤ 0.

The IBP relations generate the following elements in the case where a5 is not shifted

by ε (i.e. the case of the diagrams relevant to the two-loop static quark potential considered

in [14, 8])

f1 = (d − 2a1 − a2 − a5 − a6) − a2Y2(q
2 + Y −1

1 ) − a5Y5(Y
−1
1 − Y −1

3 ) ,

f2 = (d − a2 − 2a3 − a5 − a7) − a4Y4(q
2 + Y −1

3 ) − a5Y5(Y
−1
3 − Y −1

1 ) ,

f3 = (d − a1 − a2 − 2a5 − a6) + a1Y1(Y
−1
3 − Y −1

5 ) + a2Y2(Y
−1
4 − Y −1

5 ) + a6Y6Y
−1
7 ,

f4 = (d − a3 − a4 − 2a5 − a7) + a3Y3(Y
−1
1 − Y −1

5 ) + a4Y4(Y
−1
2 − Y −1

5 ) + a7Y
−1
6 Y7 ,

f5 = (d − a1 − 2a2 − a5 − a6) − a1Y1(q
2 + Y −1

2 ) − a5Y5(Y
−1
2 − Y −1

4 ) ,

f6 = (d − a3 − 2a4 − a5 − a7) − a3Y3(q
2 + Y −1

4 ) − a5Y5(Y
−1
4 − Y −1

2 ) ,

f7 = 2a1Y1Y
−1
6 + 2a2Y2Y

−1
6 + a5Y5(Y

−1
6 − Y −1

7 ) − v2a6Y6 ,

f8 = 2a3Y3Y
−1
7 + 2a4Y4Y

−1
7 − a5Y5(Y

−1
6 − Y −1

7 ) − v2a7Y7 .

So, the IBP elements we need are obtained from these by replacing a5 with a5 + ε.

Our algorithm works successfully in this example and gives us a family of s-bases which

provide the possibility of a reduction to master integrals. The elements of the bases are

rather lengthy, typically, with hundreds of terms, so that we do not present them in this

short paper. These s-bases correspond to the following sectors: σ{1,2,3,4,5,6,7}, σ{2,3,4,5,6,7},

σ{1,2,3,4,5,7}, σ{3,4,5,6,7}, σ{2,3,5,6,7}, σ{2,3,4,5,7}, σ{2,3,4,5,6}, σ{1,2,3,4,5}, σ{2,3,4,5}, σ{2,3,5,6} and

other sectors obtained by the symmetry transformations.

We obtain the master integrals: I1 = F (1, 1, 1, 1, 0, 1, 1), I21 = F (1, 1, 1, 1, 0, 0, 1),

I22 = F (1, 1, 1, 1, 0, 1, 0), I3 = F (1, 1, 1, 1, 0, 0, 0) . We have I21 = I12 = I2 because of

the symmetry. We also obtain I51 = F (1, 0, 0, 1, 1, 1, 1), I71 = F (1, 0, 0, 1, 1, 0, 1), I81 =

F (1, 0, 0, 1, 1, 1, 0), I41 = F (1, 0, 0, 1, 1, 0, 0). We have I71 = I81 = I7 because of the sym-

metry. Moreover, we have other copies, I52, I72, I82, I42, of this last family of the master

4A more general case, with a5 → a5 + rε and integer r, relevant to r-loop massless insertions can be

considered on the same footing.
5These integrals with the integer index of the central line contribute to the two-loop static quark potential

and were calculated in [14, 8].
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integrals which are obtained by the symmetry transformation (1 ↔ 2, 3 ↔ 4). We also

obtain I61 = F (0, 0, 1, 1, 1, 1, 0), Ī61 = F (0, 0, 1, 1, 1, 2, 0) as well as the corresponding sym-

metrical family.

To calculate the master integrals one can use the threefold Mellin-Barnes representation

F (a1, a2, a3, a4, a5, a6, a7) =

(

iπd/2
)2

2a7−1(v2)−a67/2

∏

l=3,4,5,7 Γ(al)Γ(4 − a3457 − 2ε)(Q2)a12345−4+2ε+a67/2

× 1

(2πi)3

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞
dz1dz2dz3

Γ(a12345 + a67/2 + 2ε − 4 + z3)

Γ(a345 + a67/2 + ε − 3/2 + z1 + z2 + z3)

×Γ(a3 + z1 + z3)Γ(a4 + z2 + z3)Γ(a345 + a7/2 + ε − 2 + z1 + z2 + z3)

Γ(a1 − z1)Γ(a2 − z2)Γ(8 − a1267 − 2a345 − 4ε − z1 − z2 − 2z3)

×Γ(a345 + a7/2 + ε − 3/2 + z1 + z2 + z3)Γ(4 − 2a34 − a57 − 2ε − z1 − z2 − 2z3)

×Γ(4 − a1345 − a67/2 − 2ε − z2 − z3)Γ(2 − a345 − ε − z1 − z2 − z3)

×Γ(4 − a2345 − a67/2 − 2ε − z1 − z3)Γ(−z1)Γ(−z2)Γ(−z3) , (4.4)

where a12345 = a1 + a2 + a3 + a4 + a5 etc. The integrations over the variables zi go from

−∞ to +∞ in the complex plane. The contours are chosen in the standard way: the

poles of gamma functions with the −zi dependence are to the right of the contour and the

poles with the +zi dependence are to the left of it. This representation can be derived by

applying Feynman parameterization to the subloop integral over l, introducing then three

MB integrations and, finally, integrating over k. (See Chapter 4 of [15] for details of this

method, with multiple examples.)

We obtain the following results for the master integrals:

I1 =

(

iπd/2e−γEε
)2

Q4+6εv2

[

−8π2

9ε
− 16π2

9
+

40ζ(3)

3
+ O(ε)

]

,

I2 =

(

iπd/2e−γEε
)2

Q3+6εv

[

π4

3
+ O(ε)

]

,

I3 =

(

iπd/2e−γEε
)2

Q2+6ε

[

6ζ(3) +

(

π4

10
+ 12ζ(3)

)

ε + O(ε2)

]

,

I4 =
(

iπd/2
)2

Q2−6ε Γ (1 − 2ε) Γ (1 − ε)2 Γ (3ε − 1)

Γ (3 − 4ε) Γ (1 + ε)
,

I5 =

(

iπd/2e−γEε
)2

Q6ε−2v2

[

4π2

9ε
+

32π2

9
− 8ζ(3)

3
+ O(ε)

]

,

I6 =
(

iπd/2
)2

Q2−6ε 41−2ε√πΓ (3/2 − 3ε)2 Γ (1 − 2ε) Γ (3ε − 1/2) Γ (4ε − 1)

Γ (3 − 6ε) Γ (2ε) Γ (1 + ε) v
,

Ī6 =
(

iπd/2
)2

Q2−6ε 41−2ε√πΓ (1 − 3ε)2 Γ (1 − 2ε) Γ (3ε) Γ (4ε)

Γ (2 − 6ε) Γ (1 + ε) Γ (1/2 + 2ε) v2
,

I7 =
(

iπd/2
)2

√
πΓ (3/2 − 3ε) Γ (1 − 2ε) Γ (1/2 − ε) Γ (1 − ε) Γ (3ε − 1/2)

Q6ε−1vΓ (2 − 4ε) Γ (2 − 3ε) Γ (1 + ε)
,

I8 = I7 ,

where Q =
√

−q2 and v =
√

v2.
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Observe that some of the integrals are expressed explicitly in terms of gamma functions

for general values of ε while results for some other integrals are presented in expansion in a

Laurent series in ε. The depth of this expansion can be made greater whenever necessary.

For example, we obtain the following reductions to master integrals by our algorithm:

F (1, 1, 1, 1, 1, 1,−1) = − 2Q2v2

(3d − 10)
Ī2 − 3I3 −

8(d − 3)(2d − 7)(11d − 46)

(d − 4)2(3d − 14)Q4
I4

+
4(3d − 11)(7d − 30)v2

(d − 4)(3d − 14)(3d − 10)Q2
Ī6 , (4.5)

F (2, 1, 1, 1, 1, 1, 1) = −3d − 14

2Q2
I1

− 4(d − 3)(d − 2)(2d − 7)(3d − 10)(9d − 40)

(d − 5)(d − 4)(2d − 11)(3d − 16)(3d − 14)Q8v2
I4 (4.6)

−3(d − 4)(4d − 17)(4d − 15)

(2(d − 5)(2d − 11)Q6
I5 −

16(3d − 13)(3d − 11)

(2d − 11)(3d − 16)(3d − 14)Q6
Ī6 ,

which can be checked straightforwardly, by evaluating these integrals, in expansion in ε,

using the MB representation (4.4).

5. Conclusion

We have developed an algorithm which is a generalization of the Buchberger algorithm to

the reduction problem for Feynman integrals and modified it in such a way that it works

at the level of modern calculations. We have described the main features of the algorithm.

For the examples considered, it works rather fast — these are seconds of CPU time for

Example 4 and minutes for Example 5, both for constructing s-bases and reduction to

master integrals. In fact, it has turned out that our algorithm works successfully even

at a higher level, in a reduction problem with nine indices [16]. Still to perform more

sophisticated calculations, further modifications and optimizations are needed. One of

possible ways to improve the algorithm is to combine its basic points with that of algorithms

based on Janet bases [12]. We hope to report on our progress in future publications. We

also postpone to solve various mathematical problems connected with our algorithm.
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